منابع مشابه
Asymptotic Behavior of Boussinesq System of Kdv–kdv Type
This work deals with the local rapid exponential stabilization for a Boussinesq system of KdVKdV type introduced by J. Bona, M. Chen and J.-C. Saut. This is a model for the motion of small amplitude long waves on the surface of an ideal fluid. Here, we will consider the Boussinesq system of KdV-KdV type posed on a finite domain, with homogeneous Dirichlet–Neumann boundary controls acting at the...
متن کاملSharp Global Well - Posedness for Kdv and Modified Kdv On
The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...
متن کاملNumerical solution of Boussinesq systems of KdV--KdV type
Abstract In this paper we consider a coupled KdV system of Boussinesq type and its symmetric version. These systems were previously shown to possess generalized solitary waves consisting of a solitary pulse that decays symmetrically to oscillations of small, constant amplitude. We solve numerically the periodic initial-value problem for these systems using a high order accurate, fully discrete,...
متن کاملKdV PRESERVES WHITE NOISE
It is shown that white noise is an invariant measure for the Korteweg-deVries equation on T. This is a consequence of recent results of Kappeler and Topalov establishing the well-posedness of the equation on appropriate negative Sobolev spaces, together with a result of Cambronero and McKean that white noise is the image under the Miura transform (Ricatti map) of the (weighted) Gibbs measure fo...
متن کاملOperator Splitting for Kdv
We apply the method of operator splitting on the generalized Korteweg{de Vries (KdV) equation ut +f(u)x+"uxxx = 0, by solving the nonlinear conservation law ut +f(u)x = 0 and the linear dispersive equation ut + "uxxx = 0 sequentially. We prove that if the approximation obtained by operator splitting converges, then the limit function is a weak solution of the generalized KdV equation. Convergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: İktisat İşletme ve Finans
سال: 1989
ISSN: 1308-4658,1300-610X
DOI: 10.3848/iif.1989.40.5164